
exascaleproject.org

Best Practices and Sustainability in HPC
Software Development

ATPESC 2020

Katherine Riley

Director of Science, Argonne Leadership Computing Facility
Argonne National Laboratory

August 6, 2020

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Mark C. Miller, Katherine M. Riley,

and James M. Willenbring, Software Productivity Track, in Argonne Training Program for Extreme Scale
Computing (ATPESC), August 2020, online. DOI: 10.6084/m9.figshare.12719834

• Individual modules may be cited as Speaker, Module Title, in Software Productivity Track…

Acknowledgements
• Additional contributors include: Patricia Grubel, Rinku Gupta, Mike Heroux, Alicia Klinvex, Jared O’Neal, David Rogers,

Deborah Stevens
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for
the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence
Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12719834

Good Scientific Process Requires Good Software Practices

Good Software Practices Will Increase Science Productivity

4

5

6

7

Two major journals retract papers because data
could not be validated. Lancet and NEJM.
https://www.sciencemag.org/news/2020/06/two-elite-medical-journals-
retract-coronavirus-papers-over-data-integrity-questions

Stanford antibody study attacked for statistics –
not published, but a lot of splash
https://www.medrxiv.org/content/10.1101/2020.04.14.20062463v2

rt

9

Mitigate Risk But It Is Never Zero

• Quick and dirty development of particle capability in code
• Error in tracking particles resulted in duplicated tags from round-off
• Had to develop post-processing tools to correctly identify trajectories

– 6 months to process results

• Short notice availability of one of the biggest
machines of it’s time
– < 1month to get ready, run was 1.5 weeks

FLASH had a software process in place. It was tested regularly. This was one
instance when the full process could not be applied because of time constraints.

10

Understand Limitations

• Good and bad science can be done with simple models
• Are the numerics and stability understood?
• Is it statistically sound?
• Is it reproducible? Is the data sound?
• The more complex a model(s), the easier it is to make an incorrect assumption
• … and many more …

11

Software
Practices

Software Practices and Sustainability are Tightly Coupled

Software
Sustainability

12

Customize and curate
methodologies
● Target scientific software

productivity and sustainability
● Use workflow for best practices

content development

Incrementally and iteratively
improve software practices
● Determine high-priority topics for

improvement and track progress
● Productivity and Sustainability

Improvement Planning (PSIP)

Establish software communities
● Determine community policies to improve

software quality and compatibility
● Create Software Development Kits (SDKs)

to facilitate the combined use of
complementary libraries and tools

Engage in community outreach
● Broad community partnerships
● Collaboration with computing facilities
● Webinars, tutorials, events
● WhatIs and HowTo docs
● Better Scientific Software site (https://bssw.io)

1

2

3

4

Improve Developer Productivity and Software Sustainability

https://bssw.io/

13

Objectives of the Session

• Good software practices are important for scientific productivity,
quality, and reliability of computational science

• Challenges are increasing
• Help CSE researchers increase effectiveness as well as leverage

and impact
• Facilitate CSE collaboration via software in order to advance

scientific discoveries

Your code will live longer than you expect.
Prepare for this.

Your science campaigns have real costs.
Think of the consequences.

14

Agenda
Time (Central TZ) Module Topic Speaker

9:30am-9:45am 00 Introduction David E. Bernholdt, ORNL

9:45am-10:15am 01 Overview of Best Practices in HPC Software Development Katherine M. Riley, ANL

10:15am-10:45am 02 Agile Methodologies James M. Willenbring, SNL

10:45am-11:00am 03 Git Workflows James M. Willenbring, SNL

11:00am-11:15am Break (and Q&A with speakers)

11:15am-12:00pm 04 Software Design Anshu Dubey, ANL

12:00pm-12:45pm 05 Software Testing Anshu Dubey, ANL

12:45pm-1:45pm Lunch (and Q&A with speakers)

1:45pm-2:00pm 06 Agile Methodologies Redux James M. Willenbing, SNL

2:00pm-3:00pm 07 Refactoring Anshu Dubey, ANL

3:00pm-3:15pm Break (and Q&A with speakers)

3:15pm-3:45pm 08 Continuous Integration Mark C. Miller, LLNL

3:45pm-4:30pm 09 Reproducibility David E. Bernholdt, ORNL

4:30pm-4:45pm 10 Summary David E. Bernholdt, ORNL

15

Heroic Programming

Usually a pejorative term, is used to describe the expenditure of huge
amounts of (coding) effort by talented people to overcome shortcomings
in process, project management, scheduling, architecture or any other
shortfalls in the execution of a software development project in order to
complete it. Heroic Programming is often the only course of action left
when poor planning, insufficient funds, and impractical schedules leave a
project stranded and unlikely to complete successfully.
From http://c2.com/cgi/wiki?HeroicProgramming

Science teams often resemble heroic programming
Many do not see anything wrong with that approach

http://c2.com/cgi/wiki?HeroicProgramming

16

What is wrong with heroic programming
Scientific results that could be obtained with heroic programming have run
their course, because:

It is not possible for a single person to take on all these roles

Different roles
and responsibilities

Better scientific
understanding

More complex
software

Math model

Numerics

Verification

Performance

More Complex
Computers

Emerging New
Approaches to

Science

17

In Extreme-Scale science
• Codes aiming for higher fidelity modeling and new modeling

– More complex codes, simulations and analysis
– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable development model is

through separation of concerns
– It is more difficult to work on the same software in different roles

without a software engineering process

• Complexity of workflows and of computational approaches
• Onset of higher platform heterogeneity

– Requirements are unfolding, not known a priori
– The only safeguard is investing in flexible design and robust software

engineering process

18

In Extreme-Scale science
• Codes aiming for higher fidelity modeling

– More complex codes, simulations and analysis
– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable development model is

through separation of concerns
– It is more difficult to work on the same software in different roles

without a software engineering process

• Complexity of workflows and of computational approaches
• Onset of higher platform heterogeneity

– Requirements are unfolding, not known a priori
– The only safeguard is investing in flexible design and robust software

engineering process

Computers change fast

19

Technical Debt

Accretion leads to unmanageable software
• Increases cost of maintenance
• Parts of software may become unusable over time
• Inadequately verified software produces questionable results
• Increases ramp-on time for new developers
• Reduces software and science productivity due to technical debt

Consequence of Choices
Quick and dirty collects interest which means more effort required to add features

Thoughtful solutions that are limited in applicability

20

• "... it seems likely that significant software contributions to existing
scientific software projects are not likely to be rewarded through the
traditional reputation economy of science. Together these factors provide
a reason to expect the over-production of independent scientific software
packages, and the underproduction of collaborative projects in which later
academics build on the work of earlier ones."

• Howison & Herbsleb (2011)

21

Software Process Best Practices

Baseline
• Invest in extensible code design
• Use version control and automated

testing
• Institute a rigorous verification and

validation regime
• Define coding and testing standards
• Clear and well-defined policies for

– Auditing and maintenance
– Distribution and contribution
– Documentation

Desirable
• Provenance and reproducibility
• Lifecycle management
• Open development and frequent

releases

22

Challenges Developing a Scientific Application

Technical
• All parts of the cycle can be under

research
• Requirements change throughout the

lifecycle as knowledge grows
• Verification complicated by floating

point representation
• Real world is messy, so is the

software

Sociological
• Competing priorities and incentives
• Limited resources
• Perception of overhead without

benefit
• Need for interdisciplinary interactions

23

Consider During This Track

• What risks/challenges are you currently facing?
• What practices might be easier to start in your development process?
• What choices are made in your application out of momentum vs planning?
• What support would you need for a more challenging change?
• If you consider software changes, are you considering the new risks?

exascaleproject.org

Questions

	Best Practices and Sustainability in HPC Software Development
	License, Citation and Acknowledgements
	Good Scientific Process Requires Good Software Practices��Good Software Practices Will Increase Science Productivity�
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	rt
	Mitigate Risk But It Is Never Zero
	Understand Limitations
	Software Practices and Sustainability are Tightly Coupled
	Improve Developer Productivity and Software Sustainability
	Objectives of the Session
	Agenda
	Heroic Programming
	What is wrong with heroic programming
	In Extreme-Scale science
	In Extreme-Scale science
	Technical Debt
	Slide Number 20
	Software Process Best Practices
	Challenges Developing a Scientific Application
	Consider During This Track
	Questions

